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SUMMARY 
A zonal grid methodology has been developed for the calculation of compressible fluid flows. The domain 
subdivision is based on patched grid systems composed of zones or blocks within which a distinct curvilinear 
grid is generated. The flow simulation is then carried out with a modified scheme based on the Euler finite 
volume solver of Ni. This scheme uses a distribution procedure that provides an easy and accurate way for 
the transfer of information from one block to another. This method results in a naturally conservative 
computation at the interfaces. It is analysed and developed for the treatment of embedded grids with a grid 
point common to more than four blocks. 
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1. INTRODUCTION 

The numerical simulation of flow phenomena within geometries of practical interest poses 
particular problems concerning the discretization of the calculation domain. In many situations 
the use of a single body-conforming co-ordinate system applied to the entire region allows a simple 
treatment of this problem. However, for complex geometries this approach can lead to an 
inadequate mesh, and for certain topologies the mesh cannot even be constructed. 

A plausible alternative to resolve these difficulties is the use of a zonal technique. Essentially it 
consists of dividing a geometrically complex domain into a set of simple basic regions or zones, 
within each of which a grid is generated. 

The implementation of the zonal grid methodology requires a corresponding composite 
numerical code whereby the basic equations are solved within each zone separately. The successful 
solution of the entire flow field by this piecewise approach depends on an adequate procedure for 
the transfer of the information among neighbouring blocks, and also on the manner in which the 
flow variables are matched at dividing boundaries. This can be done in several ways depending on 
the nature and degree of overlap at the zone interfaces. 

In general one can distinguish two main classes of zonal approaches: overlapping grid systems 
(Figure l(a)) and patched grid systems. This latter category can in turn be subdivided into point- 
continuous (Figure l(b)) and point-discontinuous systems (Figure l(c)). 

The overlapping grid concept is attractive in the sense that neighbouring zones do not need to 
match strictly or even be similarly aligned; consequently completely differently orientated systems 
such as H- and O-type grids can be mixed for the solution of a given problem. However, the 
communication among the different zones requires the use of interpolation which may not be 
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Figure l(a). Overlapping grids 

Grid A Grid 6 

Figure l(b). Point-continuous patched grids 

Grid A Grid B 

Figure l(c). Point-discontinuous patched grids 

conservative.'. Applications to the solution of the full potential equation using overlapping grids 
have been presented in Reference 3 and 4. In Reference 4 a mass correction is introduced to reduce 
the error in the interzonal information exchange. 

The point-continuous patched grid system is characterized by grid line continuity (but not 
necessarily metric continuity) across the interfaces. This implies that the grid within each zone has 
a certain degree of dependence with respect to its contiguous blocks, but has the interesting feature 
of providing a computation without any interpolation. Consequently it remains consistent with 
the conservation laws. Norton et aL5 have applied this methodology to the computation of 
cascade flows. Rai et aL6 present results including the supersonic flow over a cylinder with 
discontinuous metric across the interfaces. 
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The point-discontinuous patched grid system only requires that neighbouring zones meet along 
a common boundary. A conservative method for the solution of two-dimensional Euler equations 
was introduced by Rai.' This procedure, which treats the zonal boundary conditions together with 
the inclusion of local grid refinement, has since been extended to three-dimensional flow 
calculations by Hessenius.* Along other lines, Baker et ~ 1 . ~  and Berger and Jameson'O have also 
used point-discontinuous procedures when solving the Euler equations. 

2. ZONAL APPROACH AND SPECIAL POINTS 

The motivation for the zonal methodology is the study of a class of compressible discharge flows 
of intricate internal geometries with complex interactions. Ductings like the one illustrated in 
Figure 2 clearly cannot be discretized by the use of a single mesh, and a composite grid structure is 
required to accomplish such a task. When applying this approach, and depending on the 
organization of the basic subdomains, special points with entirely separate co-ordinate lines and 
directions from one zone to another" may arise. In such cases, and when using a standard control 
volume approach, particular procedures have to be illiplemented for the management of these 
specific points. 

The objective of this study is to explore an extension of the Ni schemeI2 related to the interzonal 
coupling, using a point-continuous patched grid approach. In addition, a technique for handling 
the special points which arise from the zoning of special topologies is presented. The reasons for 
the choice of this scheme over other control volume methods are based on its high computational 
efficiency associated with a multiple-grid acceleration technique, and on its singular distribution 
technique whereby corrections to the primary variables computed at the centre of the control 
volumes are distributed to their corners. This attractive feature allows a simple and, more 
importantly, conservative manner for the interface treatment. Furthermore, a straightforward 
extension to imbricate four or more subregions at a common point without a special treatment is 
possible. 

Figure 2. View of the arc chamber from Gral:I7 1, nozzle; 2, electrode; d =  32 rnm, 4= 20 mm 
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Another important characteristic explored within the present framework is the use of different 
grid refinements on different zones. This results in point discontinuity, and care has been taken to 
respect conservation. In a slightly different context, related to the multigrid procedure rather than 
the zonal approach, Usab and MurmanI3 and Dannenhoffer and have presented 
interesting alternatives to local grid refinement. 

The discretization within each zone is carried out by a transfinite interpolation followed by the 
body-fitted grid generation method’’. l6 to obtain a smooth grid. 

3 .  GOVERNING EQUj4TIONS 

The flows considered in the present study are governed by the conservation of mass, momentum 
and energy. For the unsteady state the basic equations can be written in curvilinear co-ordinates 
5 ,  II as 

aq aE aF 
at at all 
- + - + - z.0. 

The flux vectors in equation (1) are defined as 

where the terms tX, <,,, q,, q,, represent the metrics and .I is the Jacobian. In this formulation there 
are two sets of velocities. The curvilinear velocity components U ,  V and the Cartesian velocity 
components u, u, are related by 

u = u5, + u& v= uq, + uqy. (2) 

4. NUMERICAL SCHEME 

The solution method for the Euler equations (equation (1)) is based on Ni’s scheme” coupled with 
a multigrid acceleration technique. The scheme can be derived by first approximating the 
temporal correction of the primary variables using the following Taylor series expansion: 

Using equation (l), the time derivatives appearing in this relation can be expressed in terms of 
space derivatives as 

where 

Substituting into equation ( 3 )  yields the following expression for the variable increment in time: 
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The finite volume approximation of this equation can be carried out by using the information 
given by a nine-node computational cell (Figure 3) resulting from the assembly of the four basic 
subcells A, B, C and D. This step plays a key role related to the conservation principle which is now 
detailed. 

Let us define Aq,, AqB, Aqc and Aq, as the first-order changes in the basic subcells. The change 
Aq in a subcell, say for example C, is given by 

where the subscripts are defined in Figure 3. 
In order to obtain the change at point P, these four increments have to be assembled. In the 

proposed approach, this assembly is performed on the basis of a secondary (or dual) cell associated 
with the node P, whose definition is now explained. 

A typical subcell (Figure 4) is first subdivided into four control subvolumes with internal 
boundaries defined by co-ordinate lines joining the midpoints of opposite sides. The intersection 

NW N NE 
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Figure 3. Nine-node computational cell and basic subcells 

I 

Figure 4. Subdivision of subcell C into four control sub-volumes 
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of these lines specifies the (x*, y*) geometric centre of the cell, which can also be seen as the 
averaging of the four (x, y)  nodal values of the cell. This choice for subdivision implies a symmetric 
distribution of the subcontrol volume edges, but not an equal volume partition. 

Once the subcontrol volumes are defined, these are assembled at a common node and the dual 
cell is generated. This element contains four control subvolumes from four different primary cells, 
thus being described by eight line segments, two in each of the cells A, B, C and D. This idea is 
illustrated in Figure 5. 

The reason for this choice, instead of using the original cell (Figure 3), is that in such a case, 
characterized by an even distribution of the changes on a cell to its vertices, the whole increment in 
a subcell is used in the assembly of four different points, and an overlapping occurs (Figure 6).  This 
implies that conservation is not strictly assured. 

In contrast, when the assembly is carried out on the displaced cells (Figure 5), there is no such 
overlapping, and a fully conservative scheme consistent with the basic principle of finite volumes, 
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Figure 5. Assembled dual cell 
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Figure 6. Contribution of Aq, to the P and NE nodes 
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with fluxes at element edges cancelling each other, results. In this manner, all conservation laws are 
applied to the same control volume, there being one control volume associated with each point. 

In order to accomplish this operation, the changes calculated by equation (6) are first weighted 
by the portion of the volume of the basic subcells related to the node P ( Vcp in Figure 4). In general, 
these fractions are not a quarter of the volume of the subcells. Then the summation of these 
volume-weighted changes is averaged by the volume of the secondary cell, 

Vp = VAp + VBp + Vcp f VDp. 

In doing so, the leading term of (5)  (the first-order change in time) can be represented by the 
following discrete form: 

This practice for computing the first-order changes can be regarded as a conservative transfer 
from the primary grid (Figure 3) to the dual mesh (Figure 5). It should be noted that using a 
Cartesian mesh, and if the volumes of the four basic sub-cells are equal, the present method 
coincides with the distribution procedure introduced by Ni,I2 i.e. 

AqP = S(Aq.4 + + Aqc + A%). 
With the first-order changes in time now in hand, we turn to the second-order term. Consistent 

with Ni, expressions such as the following can be defined at the centre of the different subcells: 

AEc = AFc = BcAqc, (8) 

where A and B are the Jacobian matrices defined by equations (4). Using these, the second-order 
changes in time (i.e. the second term of equation ( 5 ) )  can be approximated as follows: 

Applying the control volume approximation of these changes on the secondary cells, the 
following discretization is obtained: 

Combining equation (5),  (6) and (8) yields an expression for the overall correction to the 
conservation variables: 

1 1 
6qp = -[Aq VAp + At(AE* + AF*)]A + -[Aq VBp + At(AE* - AF*)], 

VP VP 
1 1 

VP VP 
+-[Aq Vcp + At(-AE* - AF*)]c +-[Aq VDp + At( - B E *  + AF*)],, 

where the superscript star is used to denote fluxes across the faces of the dual elements. 

changes Aq and second-order changes AE and AF to the vertices of the primary cells. 
The structure of equation (10) may be interpreted as a formula that distributes first-order 

Thus the global correction procedure can be summarized by the following sequence: 

1. The first-order changes in the subcells A, B, C and D are calculated according to equation (6). 
2. The second-order changes are computed using equations (8). 
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3. The first- and second-order changes are distributed according to equation (10). 
4. The dependent variable q is updated by 

q"+l = q" + 6q. 

5. MULTIPLE-GRID PROCEDURE 

The convergence of the above basic algorithm can be substantially improved by using a multiple- 
grid procedure proposed by Nilz . Essentially it consists of effectively propagating the corrections 
given by equation (10) throughout the calculation domain by using successively coarser grids. This 
allows a larger time step, thus accelerating the convergence. Details concerning the multigrid 
algorithm can be found in References 12, 17 and 18. 

6. ZONAL DISCRETIZATION 

A valuable discretization tool currently employed in grid generation is the body-conforming 
technique.15 In its basic form, this procedure yields a curvilinear mesh on a single region bounded 
by two pairs of opposite curves, in such a manner that co-ordinate lines are coincident with the 
respective domain boundaries. 

The generalization of this idea to more complex domains such as a multibranched channel 
passage, where the topology is no longer represented by a four-sided domain, can lead to a 
cumbersome grid generation process, which complicates the subsequent flow simulation. A good 
strategy to overcome these difficulties is the zonal grid methodology. According to this, the 
physical field is first segmented into a number of contiguous subdomains, each of them with the 
general form of a curved-sided quadrilateral and logically treated as a rectangle. Once the zones 
are defined, their boundaries are discretized by applying a linear interpolation procedure. Using 
this boundary point distribution, the distinct subdomains are initially gridded by using a 
transfinite interpolation. This mesh can be subsequently smoothed by solving an elliptic system1 
(i.e. turned into a body-fitted grid). It is at this stage that partial or complete continuity of grid lines 
between blocks is obtained as a result of the interface treatment. In fact, since the interfaces are not 
actual boundaries, these can be considered as interior elements and calculated using values of the 
points on surrounding layers outside the zone. This allows the points on an interface to move 
freely, with their final location determined by the grid generation procedure. In this case complete 
continuity is achieved. Alternatively, the points at the interface location may be completely 
specified (as for real boundaries). In this instance the points common to two joining blocks and 
originally defined from the interpolation procedure do not move, and only point (but no slope) 
continuity results. 

7. BOUNDARY CONDITIONS AND INTERFACE TREATMENT 

According to the zonal method, the flow simulation on a complex region is carried out into 
geometrically simpler four-sided subdomains. The flow solver treats every logical block as a 
rectangle to which appropriate boundary conditions are applied. On a given zone, a side can be an 
inlet, an outlet, a solid wall or an interface. The first three types of boundaries are physical and are 
treated accordingly. The last type, whose location is arbitrary, is in fact a fictitious permeable 
interface, and no boundary condition should be applied on it. It is at this point that the Ni scheme 
becomes particularly interesting, because it allows a proper treatment of the zonal boundary for 
the governing equations. 
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Zone L Zone R 
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Figure 7. Change distribution to a point on an interface 

The core of the method, represented by the distribution formula (lo), indicates how first- and 
second-order corrections calculated on an element are divided to its four vertices. This 
characteristic renders the scheme well suited for the implementation of the zoning. For the case of 
a standard grid node (surrounded by eight points) at the interface of two zones, the situation can 
be regarded in the following way. 

The node P will first receive the contribution of two interior elements of the current zone 
(zone L, Figure 7). This correction will be subsequently completed when treating the adjacent zone 
(zone R, Figure 7), which will result in two others contributions. In this manner, a point at an 
interface shared by two blocks is in fact treated as if it were any other interior point. 

This considerably simplifies the coding, since no additional row of fictitious points or 
interpolation procedure is required to provide the connection across the interfaces. 

8. SPECIAL POINTS 

An important feature of the proposed distribution method appears in the handling of the special 
points, i.e. those that are not surrounded by eight neighbours. Among these we distinguish two 
types, those common to five (or more) subregions (Figure 8) and those at an interface between two 
regions of different grid density (Figure 9(a)). 

In the first case the treatment is just the natural application of the assembly procedure described 
in Section 4. Namely, the five changes arising will be weighted by their corresponding volumes and 
summed, i.e. 6qp = 1;: GqiVip, then this weighted correction will be averaged by the volume 
associated with the node P, i.e. Vp = CjZ: Vip, yielding the actual correction 6q=6qp/ Vp. If, for 
example, all linking elements have unit volume, this can be interpreted as if every element 
contributes one-fifth of the total correction to this point. 

The handling of the second family of singular points (Figure 9(a)) can also be regarded in the 
context described in Section 4; however, this time a further explanation is presented. 

A basic condition that a scheme has to respect to maintain global conservation is that all 
interior fluxes cancel each other. This must also be true for a zonal boundary, with any residual 
fluxes remaining on this. For the case of cell A illustrated in Figure 9(a), this implies that the 
appropriate flux balance must be carried out by considering the fluxes through its five faces 1-2, 
24,4-7,7-6 and 6-1. This point on conservative flux balance for this specific configuration has 
been previously evoked in Reference 14. 

Once this conservative flux balance is done, the question that remains is how to distribute the 
correction computed on cell A to its five nodes. As previously stated, this is carried out on the basis 
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Zone I 

Zone V 

Zone IV Zone 111 

Figure 8. Star point surrounded by 10 neighbours 

.. 

Figure 9(a). Fine and coarse mesh interfacing 

Coarse Grid Interlace Fine Grid 

Figure 9(b). Dual cell at a fine and coarse mesh interfacing 
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of the dual cells. Figure 9(b) illustrates the configuration of these near and at the interfacing of the 
coarse and fine grids. The points PC on the coarse mesh and PF on the fine mesh correspond to 
internal points on the respective zones, so that the corrections to these nodes are treated via the 
normal assembly procedure. 

The point PI is on the interface, and the correction to this node has to take into account 
simultaneous changes belonging to the coarse and fine meshes. These changes require the 
definition of associated volumes. The volumes arising from the fine mesh side and specified in the 
same manner as for any other regular point. For the definition of the volumes arising from the 
coarse mesh side we proceed as follows. 

The midpoints on the 6-7 (point 9) and 1-2 (point 10) faces (Figure 9(a)) are joined, and the 
midpoint on the side 1-6 (point 11) and node 4 are linked. The intersection of these lines defines the 
point 12 (which it is not necessarily the geometric centre). Then the midpoint on the face 2-4 and a 
point halfway between points 10 and 12 are connected. Finally the midpoint on the face 4-7 and 
the midpoint on the side 12-9 are also linked. In this manner the portion of the dual cell belonging 
to the coarse mesh side is obtained, thus completing the definition of the peculiar element. 

Regardless of the definition of the dual cell associated with node PI (Figure 9(b)), any singular 
treatment must follow the basic premise of any finite volume procedure, i.e. it must have a 
statement of conservation applied on it. This attribute was not considered in Reference 13 and 14, 
in which the correction to this node (point 4 in Figure 9(a)) is obtained by averaging the 
distribution to nodes 2 and 7. It should be noted that the proposed geometry of the transition cell 
is not unique. Other descriptions can be imposed, but they should always be treated so as to ensure 
global conservation. 

In spite of the fact that the technique described above is general, caution is required in the code 
structure regarding the connectivity of the nodal points. The subdivision process, which is 
performed individually on each block, identifies a grid point with the integers I ,  J corresponding 
to logical local co-ordinates in the interior of each zone. The connection of any I ,  J point within a 
block with its immediate neighbours is simply given by the structure I & 1, J ;  I ,  J 1. On the 
other hand, nodal points along block interfaces simultaneously belong to different systems and 
should be uniquely distinguished. When more than four zones meet at a single point, the co- 
ordinate system cannot be consistently followed across all the interfaces, and the ‘smashing’ of the 
I(5) co-ordinate by a J ( q )  co-ordinate (or vice versa) at some interface is unavoidable. This 
problem has been solved by assigning a single index to all nodes after subdividing each of the 
blocks. In this way all nodal points having the same co-ordinate will be represented by the same 
index, thus eliminating any possible ambiguity. 

9. COMPUTED RESULTS 

N A  CA0012 

The current approach was first applied to the computation of the flow around the NACA0012 
aerofoil at an angle of attack tx of zero and for a freestream Mach number M=0.8 .  The 
discretization was carried out using an 0-type grid with (160 x 36) mesh points. 

Figure 10 compares the current prediction with the results of Reference 19 in terms of the 
pressure distribution. Both solutions are substantially the same, predicting equal shock position 
and intensity. However, a slightly sharper shock emanates from the present calculations. Near the 
trailing edge, the current computation displays a more pointed curve; this is attributed to fewer 
points being used in this region. 
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Figure 10. Comparison of calculated pressure distribution with results of Reference 19 (M=0 .8 ,  a=O) 
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Figure 11. Embedded co-ordinate grid system with a star point 

A second application of the present composite approach was carried out on a NACA0012 
cascade passage. Aerofoils in the cascade are unstaggered and the pitch-to-chord ratio is 3.6. The 
freestream angle is zero. 

A suitable grid for this type of configuration can be achieved by combining C- and H-type grids. 
This results in an appropriate grid for near-blade regions, where the C-type grid is employed, and 
in a satisfactory mesh for the upstream region, where the H-type grid is used. 

A partial view of this embedded co-ordinate grid is shown in Figure 11, where a star point 
appears as a consequence of the composite discretization. 

The transonic case for conditions leading to an inlet Mach number of 0.8 was computed. 
Figure 12 illustrates iso-Mach lines in the vicinity of the special star point. Close examination 
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Figure 12. Iso-Mach contours near the star point 

Figure 13. 
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Pressure coefficient for a non-lifting NACA0012 cascade 

shows no unrealistic behaviour of the computed fluid parameters, clearly indicating the 
correctness of the treatment. 

The pressure coefficient was computed and is illustrated in Figure 13. The computed results 
agree reasonably well with those presented in Reference 20, with the exception of the maximum 
recovery pressure after the shock. This discrepancy could be attributed to the different models 
used. 
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J P L  nozzle 

With the objective of testing a second characteristic of the proposed approach, namely point 
discontinuity arising from different grid densities, the geometry of the nozzle studied by Cuffel 
et aLz' was chosen to conduct a second group of tests. Because a flow in which a strong shock 
appears is more appropriate for the verification of a zonal reduction, the nozzle was operated at a 
pressure ratio P,/P, = 0.7. 

A first study was conducted by subdividing the domain into three zones, each of them with a 
consecutive double grid density from the inlet to the outlet. Figure 14(a) illustrates the 
discretization. Computation of a plane flow using this discretization predicts a shock in the finer 
zone near the outlet. The depicted iso-Mach lines in Figure 14(b) show continuity from one zone to 
an other, revealing a transparent interfacing. 

A second zoning was then applied by dividing the nozzle into two regions from the axis of 
symmetry to the wall, with a mesh twice as fine in the upper zone. The zones and the grid are 
shown in Figure 15(a). In this case the shock represented by iso-Mach contours indicates bands of 
different thickness on each region (Figure 15(b)). This is intimately related to the mesh size, as 
expected. Here the transition from one region to the other is also smooth, indicating the 
correctness of the procedure. 

Figure 14. Composite grid and (b) iso-Mach contours for three-zone nozzle calculation 
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Figure 15. Composite grid and (b) iso-Mach contours for two-zone nozzle calculation 

A final test was performed for this nozzle, for an axisymmetric subsonic-supersonic flow. The 
discretization for this test is the same that used for the first case (Figure 14(a)). Note that in order 
to remain coherent with the axisymmetric configuration, the weighting procedure presented in 
Section 4 has to include the radial co-ordinate in order to correctly represent the influence of the 
volumes. 

The results, displayed in Figure 16 in terms of the Mach number at  the wall and at the centreline, 
are compared with the experimental data of Reference 21. A good concordance of the numerical 
calculations with the measured values is encountered. Once again no discontinuity appears at the 
interfacing. 

Double nozzle 

As a last application, the current approach was used to compute a flow studied experimentally 
by Graf et a1.” The geometry employed by these authors consists of an axisymmetric chamber 
with a dual-flow nozzle arrangement and an electrode (Figure 2). This type of configuration is 
found in circuit-breaker devices, where a discharge flow interacting with a strong electric arc takes 
place. The present numerical simulation was restricted to the aerodynamic aspects of the flow, 
neglecting the interaction with the electric arc. 
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Figure 16. Comparison of JPL nozzle Mach number distribution at wall and centreline 

Figure 17 illustrates the zoning, where a star point with five meeting zones can be seen. The 
domain was subdivided into 12 zones, and the discretization used a total of 2192 points. 

The calculations made for this case reveal that the flow reaches the sonic point at the throat of 
the nozzle, so that when approaching the electrode on the right, a bow shock forms. Figure 18 

Figure 17. Zoning for the geometry of Reference 22 

Figure 18. Computed Mach contours near the electrode 
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shows an enlarged view of computed Mach contours near the electrode region. The flow reaches 
the electrode with a Mach number around 3, and a detached shock is predicted. A reflection of the 
shock on the outer wall of the nozzle can also be expected. 

Figure 19 depicts computed contours of constant density, represented by means of a cloud of 
points, and compares them with the interferogram obtained in Reference 22. Although this 
parallel is only qualitative, the similarity is remarkable. 

10. CONCLUSIONS 

A zonal approach was developed and implemented for the solution of the Euler equations in 
multibranched geometries. 

A fully conservative procedure based on the work of Ni was devised. The proposed method is 
characterized by a finite volume technique with one control volume associated with each grid 
node. The distributive or assembly nature of the scheme, together with the presented approach, 
allow a straightforward and conservative manner for the transfer of information from one zone to 
another. 

Point-continuous and point-discontinuous patched grid systems were applied in various test 
cases. For the first type of gridding, particular points meeting more than four zones were 
successfully treated. For the second kind of grid configuration, the correct treatment of transition 
elements, which makes it possible to match one control volume with two others side-by-side, was 
also achieved. 
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